

Using Satellite Data to Improve Ozone, PM and Visibility Modeling

Nancy J. Brown

NASA/TOMS

Lawrence Berkeley National Laboratory November 20, 2001

Participating Institutions

- Lawrence Berkeley National Laboratory
- University of California, Berkeley
- Western States Petroleum Association

Research Team

- Nancy Brown
- Robert Van Buskirk
- Robert Harley
- . Shaheen Tonse

Research Objectives

- To use data collected by remote sensing from satellites combined with limited ground truth experiments to characterize the variability of actinic flux.
- To develop methods to incorporate descriptions of the variability into air quality modeling systems.
- Represent variability as a function of spatial location and time in air quality models

Clean Air Act (1990) makes modeling a cornerstone of air quality

Achieving Objectives Will

- Substantially improve models and allow understanding how regional control options change with space and time for the
 - ? 1-hour 120 ppm ozone standard
 - ? New 8-hour average 80 ppm ozone standard
 - ? New standards for PM-2.5
 - ? Regional haze rule
 - ? Risk-based standards for Hazardous Air Pollutants (HAPs)

E&P and Air Quality

Consequence to Industry

Implementation of current and new standards, newly proposed rules, and new considerations of inter-basin and –state transport threaten to impose further control measures on E&P operations to reduce emissions.

This will impact production by limiting current operations and the permitting of new ones.

Variability in Atmospheric Processes

- Is responsible for differences among episodes
- Often restricts what we can model both with respect to spatial extent and temporal resolution
- Important yet expensive to characterize
 - ? (Satellite data will help considerably)
- Resulted in practice of monitoring and modeling 2 to 4 day air quality episodes that may not be representative

Benefit to Industry: Research will change existing practice-

- Satellite measurements are especially suited for characterizing variability
 - ? Global coverage
 - ? Long term records
 - ? Spatial and temporal resolution
 - ? Ground truthing networks
- Will allow departure from modeling limited episodes so that seasonal modeling might be pursued so that

Control strategies that address many episodes can be devised

Why Actinic Flux?

- Actinic flux: Amount of solar radiation reaching earth's surface per unit time per unit wavelength units: photons cm⁻²s⁻¹nm⁻¹.
- Actinic flux:
 - ? drives the photochemistry
 - ? determines amount of light in a sight path
 - ? heats the atmosphere and surface etc.
 - ? IS HIGHLY VARIABLE

Atmospheric interactions important for solar radiation

Causes of Actinic Flux Variability

- Well understood: solar zenith angle, terrain elevation
- Moderately understood: ground albedo, total ozone column
- Poorly understood: aerosol amount and optical properties
- Most poorly understood: clouds

Effects of these are often represented by changes in optical depth which is a measure of the opacity of the atmosphere to light.

How variable is the flux?

- Clouds can change opacity by a factor of 2 or more for ? in range 290-420 nm in 30 minutes
- Total column ozone can change by 10 %
 - ? (15 % and 4% in O₃ and H₂CO photolysis)
- Aerosol optical depths can vary by factors of 5 within a few days
 - ? (25 % and 50 % in NO_2 and O_3 photolysis)
- Important aerosol optical properties can vary by 20 %--10 % error in photolysis and large error in visibility
- Error in NO₂ and O₃ photolysis translates almost
 1:1 as predicted ozone, oxidant, and PM error

Initial Research Focus

- Determine impact of clouds, aerosols, and ozone on actinic flux in 290 to 420 nm region will yield following model improvements:
 - ? NO₂ photolysis rate —most important for predicting ozone
 - ? O₃ photolysis rate-important for predicting secondary PM production and predicting visibility
 - ? H₂CO photolysis rate—it affects OH concentration and H₂CO is a HAP carcinogen

Research Strategy

- Step I--Use data from the few satellites that measure a given spot with many instruments – (tend to have low spatial and temporal resolution) along with the inverse modeling algorithms that have been developed for their products to develop models for actinic flux attenuation.
- Step II--Correlate the output of these models with highly spatially and temporally resolved (but limited in number) satellite products to achieve a representation of the actinic flux variability on spatial and temporal scales of interest.

Research Strategy cont'd

- Step III-- Validate the model representation of variability with ground based measurements.
- Step IV-- Represent actinic flux variability in the EPA Community Multiscale Air Quality model for ozone, PM and visibility modeling

Satellite Data classification Scheme

- Level 0: Raw data stream from spacecraft
- Level 1: Measured radiances, geometrically and radiometrically calibrated
- Level 2: Geophysical variables at highest resolution available
- Level 3: Averaged data providing spatially and uniform coverage—must choose a grid
- Level 4: Data produced by theoretical model, possible with measurement as input

Tools to Accomplish Research

- Total Ozone Monitoring Spectrometer (TOMS)
 - ? Spacecraft: Earth Probe, Meteor 3, Nimbus 7, Triana, OMI etc.
 - ? Satellite products: aerosols, ozone, reflectivity, erythemal UV
- NOAA Geostationary Operational Environmental Satellite (GOES)— many spacecraft
 - ? Products: 5 imager bands and 19 sounder channels for water vapor, temperature, clouds etc
- MODIS, MISR, and CERES
 - ? Products: many spectral bands that provide considerable information about aerosols and clouds

TOMS Products

Total Ozone

Reflectivity

Earth Probe TOMS Reflectivity on August 11, 2001

Goddard Space Flight Center

New NASA Aerosol Satellite Products

MISR: Aerosol image of fires in the Grand Tetons National Park, Wyoming

MISR: Aerosol image of the Louisiana/Mississippi Coast including the Breton Island Wildlife Refuge

Tools to Accomplish Research

- Algorithms developed by our group for optical depth calculations
- Algorithms developed by remote sensing community for ozone, aerosols, and clouds
- Ground truthing: USDA UV radiation monitoring sites data
 - ? Includes broadband meters to measure uv irradiance, temperature, humidity, and irradiance at 7 wavelengths in the visible
 - ? Other ground-based instruments (CCOS, Houston, Nashville, and other campigns

Tasks

- Review and acquire data, algorithms, and scientific literature associated with ozone, clouds, and aerosols
- II Create web-based computer archive
- III Conduct analysis for prototype applications
 Ozone and visibility emphasizing the
 photochemistry
- **IV** Technology transfer

Deliverables(Within first 18 months)

- Bimonthly progress reports
- Year I report to DOE
- Paper at science meeting
- Paper submitted to journal
- Informing industry and regulators of progress
- Initial version web-based tool
 - ? Model input files for specific regions

End Here

